Abstract

Aromatization of n-hexane over zinc-modified ZSM-5 zeolites was investigated. It was shown that incorporation of zinc by ion exchange into cationic positions of NH4-ZSM-5 zeolite causes acid-site strength redistribution and generation of new relatively strong Lewis acid sites in zeolite increasing the selectivity of n-hexane aromatization in comparison with the parent NH4-ZSM-5 zeolite. Simultaneous presence of Lewis and Broensted acid sites in ZSM-5 zeolite does not affect the strength of Broensted acid sites in zeolite. For the activity/selectivity of aromatization of n-hexane on Zn-modified ZSM-5 zeolites, the amount of Zn and its localization in the cationic positions are decisive. The reaction of n-hexane can be also initiated by the Zn species alone in the cationic positions. ZnO species alone as an extraframework phase was found inactive in the catalyst for aromatization of n-hexane. The influence of ZnO addition on the performance of pure ammonium forms of ZSM-5 zeolites in n-hexane conversion is a result of partial migration of zinc into cationic positions of zeolite by solid-state ion exchange.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call