Abstract

Transgenic mice with a G86R mutation in the mouse superoxide dismutase (SOD-1) gene, which corresponds to a mutation that has been observed in familial amyotrophic lateral sclerosis (ALS), display progressive loss of motor function and provide a valuable model of ALS. The pathology in the spinal cords of these mice was evaluated to determine whether there are chemically identified populations of neurons that are either highly vulnerable or resistant to degeneration. Qualitatively, there were phosphorylated neurofilament protein (NFP)-immunoreactive inclusions and a pronounced loss of motoneurons in the ventral horn of the spinal cord without the presence of vacuoles that has been reported in other SOD-1 transgenic mice. Neuron counts from SOD-1 and control spinal cords revealed that the percentage loss of NFP-, choline acetyltransferase (ChAT)-, and calretinin (CR)-immunoreactive neurons was greater than the percentage loss of total neurons, suggesting that these neuronal groups are particularly vulnerable in SOD-1 transgenic mice. In contrast, calbindin-containing neurons did not degenerate significantly and represent a protected population of neurons. Quantitative double-labeling experiments suggested that the vulnerability of ChAT- and CR-immunoreactive neurons was due primarily to the presence of NFP within a subset of these neurons, which degenerated preferentially to ChAT- and CR-immunoreactive neurons that did not colocalize with NFP. Our findings suggest that NFP, which has been demonstrated previously to be involved mechanistically in motoneuron degeneration, may also be important in the mechanism of degeneration that is initiated by the SOD-1 mutation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.