Abstract
Caenorhabditis elegans can survive upon harsh environments by entering dauer diapause with reduced metabolic activity and distinctive structural changes. We employed optical diffraction tomography (ODT) to quantitatively measure the transition of mass density distribution of living C. elegans larvae in the reproductive and diapause stages. ODT revealed that the mass density of C. elegans larvae increased upon entry into dauer diapause, and surprisingly, the harshly desiccated dauer larvae exhibited very high refractive index values (n ~ 1.5). Moreover, mutants that are sensitive to desiccation displayed structural abnormalities in the anhydrobiotic stage that were not observed by conventional microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.