Abstract

In the interspecific cross of Populus trichocarpa x P. deltoides, unexpected simultaneous occurrence of diploid hybrids and triploid hybrids (with two alleles from the female parent and one from the male parent at each locus) led us to examine the evolutionary genetic significance of this phenomenon. As expected, leaf size and shape of the triploid progeny are closer to the female P. trichocarpa than male P. deltoides parent. Although the pure triploid progeny population did not have higher genetic variance in leaf traits than the pure diploid population, the former appears to hide much non-additive genetic variance and display strong genetic control over the phenotypic plasticity of leaf traits. It is suggested that the cryptic non-additive variance, especially epistasis, can be released when a population is disturbed by changes in the environment. A mixed diploid and triploid progeny population combines phenotypic and genetic characteristics of both pure hybrids and is considered to be of adaptive significance for populars to survive and evolve in a fluctuating environment. The significant effect due to general and specific combining ability differences at the population level suggests that the population divergence of these two species is under additive and non-additive genetic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.