Abstract

Development of the scleral ossicles, a ring of bony elements within the sclera, is directed by a series of papillae that arise from placodes in the conjunctival epithelium over a 1.5-day induction period in the chicken embryo. The regular spacing of the papillae around the corneal-scleral limbus suggests that their induction may be regulated by a reaction-diffusion mechanism, similar to other epithelial appendages. Some key placode signalling molecules, including β-catenin, are known to be expressed throughout the induction period. However, others have been studied only at certain stages or have not been successfully detected. Here we use qPCR to study the gene expression patterns of the wingless integration (WNT)/β-catenin, bone morphogenetic protein (BMP), ectodysplasin (EDA), fibroblast growth factor (FGF) and hedgehog (HH) signalling families in discrete regions of the eye throughout the complete conjunctival placode and papillae induction period. This comprehensive analysis revealed a variable level of gene expression within specific eye regions, with some genes exhibiting high, moderate or low changes. Most genes exhibited an initial increase in gene expression, followed by a decrease or plateau as development proceeded, suggesting that some genes are important for a brief initial period whilst the sustained elevated expression level of other genes is needed for developmental progression. The timing or magnitude of these changes, and/or the overall gene expression trend differed in the temporal, nasal and/or dorsal eye regions for some, but not all genes, demonstrating that gene expression may vary across different eye regions. Temporal and nasal EDA receptor (EDAR) had the greatest number of strong correlations (r > 0.700) with other genes and β-catenin had the greatest number of moderate correlations (r = 0.400–0.700), while EDA had the greatest range in correlation strengths. Among the strongly correlated genes, two distinct signalling modules were identified, connected by some intermediate genes. The dynamic gene expression patterns of the five signalling pathways studied here from conjunctival placode formation through to papillae development is consistent with other epithelial appendages and confirms the presence of a conserved induction and patterning signalling network. Two unique gene expression patterns and corresponding gene interaction modules suggest functionally distinct roles throughout placode development. Furthermore, spatial differences in gene expression patterns among the temporal, nasal and dorsal regions of the eye may indicate that the expression of certain genes is influenced by mechanical forces exerted throughout development. Therefore, this study identifies key placode signalling factors and their interactions, as well as some potential region-specific features of gene expression in the scleral ossicle system and provides a basis for further exploration of the spatial expression of these genes and the patterning mechanism(s) active throughout conjunctival placode and papillae formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call