Abstract
Delineating the cascades of growth and transcription factor expression that shape the developing nervous system will improve our understanding of its molecular histogenesis and suggest strategies for cell replacement therapies. In the current investigation, we examined the ability of the proneural gene, Neurogenin1 (Neurog1; also Ngn1, Neurod3), to drive differentiation of pluripotent embryonic stem cells (ESC). Transient expression of Neurog1 in ESC was sufficient to initiate neuronal differentiation, and produced neuronal subtypes reflecting its expression pattern in vivo. To begin to address the molecular mechanisms involved, we used microarray analysis to identify potential down-stream targets of Neurog1 expressed at sequential stages of neuronal differentiation. ESC expressing Neurogenin1 begin to withdraw from cycle and form precursors that differentiate exclusively into neurons. This work identifies unique patterns of gene expression following expression of Neurog1, including genes and signaling pathways involved in process outgrowth and cell migration, regional differentiation of the nervous system, and cell cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.