Abstract

Flooding in urban areas can be caused by heavy rainfall, improper planning or component failures. Few studies have addressed quantitative contributions of different causes to urban flood probability. In this article, we apply probabilistic fault tree analysis for the first time to assess the probability of urban flooding as a result of a range of causes. We rank the causes according to their relative contributions. To quantify the occurrence of flood incidents for individual causes we use data from municipal call centres complemented with rainfall data and hydrodynamic model simulations. Results show that component failures and human errors contribute more to flood probability than sewer overloading by heavy rainfall. This applies not only to flooding in public areas but also to flooding in buildings. Fault tree analysis has proved useful in identifying relative contributions of failure mechanisms and providing quantitative data for risk management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.