Abstract

Adopting an effective top coal caving method is the key to enhancing coal recovery and reducing gangue content for the fully mechanized top coal caving working face with extra-thick coal seams. In this study, the movement of coal particles generated during top coal caving is considered to follow a normal distribution. Then, the caving body and coal-rock settlement along the working face during the caving process are studied based on both the random media theory and probability theory. Accordingly, the optimal caving interval and caving sequences are determined, and a novel interval symmetrical coal caving method is proposed. The proposed method is systematically verified with results from physical similarity tests, and different caving methods are assessed by field tests. The results show the following: (1) The coal-rock settlement and the caving body demonstrate clear axial symmetrical features along the working face; the size of the caving body increases as the caving height grows and its shape turns progressively from semicircular to semielliptical with a lower foot of the coal-rock settlement. (2) The caving interval is derived using the sum of the radii of the coal-rock settlement curves formed by the two largest caving bodies. (3) The symmetrical caving approach provides a symmetrical space for the subsequent movement of the broken top coal, which enables a uniform development of the caving body. (4) Compared with the traditional sequential coal caving method with the same number of supports, the interval symmetrical caving method results in a 21.7% of coal production increase, 17% caving rate promotion, and a shortened caving time by 23.4%. (5) The interval symmetrical caving method is found to improve the controllability of the caving process at the fully mechanized top coal caving working face. In general, this work presents a theoretical approach to select the optimal caving methods for the fully mechanized caving working face in extra-thick coal seams for an improved production efficiency of the work face. The results of this study can also provide theoretical significance and referencing value for quantitative analyses of the coal caving methods for work faces with similar geological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.