Abstract
BackgroundIntratumoral hypoxia is one of the resistant factors in radiotherapy and chemotherapy for cancer. Although it is detected by 18F-fluoromisonidazole (FMISO) PET, the relationship between intratumoral hypoxia and oxygen metabolism has not been studied. The purpose of this study was to evaluate the intratumoral perfusion and oxygen metabolism in hypoxic regions using the rat xenograft model. Ten male Fischer rats with C6 glioma (body weight = 220 ± 15 g) were investigated with 18F-FMISO PET and steady-state inhalation method of 15O-labelled gases PET. The tumoral blood flow (TBF), tumoral metabolic rate of oxygen (TMRO2), oxygen extraction fraction (OEF), and tumoral blood volume (TBV) were measured under artificial ventilation with 15O–CO2, 15O–O2, and 15O–CO gases. Multiple volumes of interest (1-mm diameter sphere) were placed on the co-registered 18F-FMISO (3 h post injection) and functional 15O-labelled gases PET images. The TBF, TMRO2, OEF, and TBV values were compared among the three groups classified by the 18F-FMISO uptake as follows: group Low (L), less than 1.0; group Medium (M), between 1.0 and 2.0; and group High (H), more than 2.0 in the 18F-FMISO standardized uptake value (SUV).ResultsThere were moderate negative correlations between 18F-FMISO SUV and TBF (r = −0.56 and p < 0.01), and weak negative correlations between 18F-FMISO SUV and TMRO2 (r = −0.38 and p < 0.01) and 18F-FMISO SUV and TBV (r = −0.38 and p < 0.01). Quantitative values were as follows: TBF, (L) 55 ± 30, (M) 32 ± 17, and (H) 30 ± 15 mL/100 mL/min; OEF, (L) 33 ± 14, (M) 36 ± 17, and (H) 41 ± 16%; TMRO2, (L) 2.8 ± 1.3, (M) 1.9 ± 1.0, and (H) 2.1 ± 1.1 mL/100 mL/min; and TBV, (L) 5.7 ± 2.1, (M) 4.3 ± 1.9, and (H) 3.9 ± 1.2 mL/100 mL, respectively. Intratumoral hypoxic regions (M and H) showed significantly lower TBF, TMRO2, and TBV values than non-hypoxic regions (L). OEF showed significant increase in the severe hypoxic region compared to non-hypoxic and mild hypoxic regions.ConclusionsThis study demonstrated that intratumoral hypoxic regions showed decreased blood flow with increased oxygen extraction, suggesting the need for a treatment strategy to normalize the blood flow for oxygen-avid active tumor cells in hypoxic regions.
Highlights
Intratumoral hypoxia is one of the resistant factors in radiotherapy and chemotherapy for cancer
It has been suggested that intratumoral oxygen metabolism is heterogeneous depending on the tumor microenvironment and quantitative measurement of oxygen consumption is essential to elucidate the mechanism of tumor hypoxia as it is the shortage of oxygen supply by blood flow against oxygen demand
We have reported on the relationship between blood supply and oxygen consumption in intratumoral hypoxic regions according to the 18F-FMISO standardized uptake value (SUV)
Summary
Intratumoral hypoxia is one of the resistant factors in radiotherapy and chemotherapy for cancer It is detected by 18F-fluoromisonidazole (FMISO) PET, the relationship between intratumoral hypoxia and oxygen metabolism has not been studied. The purpose of this study was to evaluate the intratumoral perfusion and oxygen metabolism in hypoxic regions using the rat xenograft model. 18F-FMISO PET cannot reflect regional oxygen metabolism, and in vivo quantitative imaging of oxygen consumption in the hypoxic tumor has not been investigated. We aimed to evaluate the relationship between intratumoral oxygen demand and blood supply in hypoxic regions by in vivo 15O-labelled gases and 18F-FMISO PET using the rat xenograft model of C6 glioma, focusing on the oxygen extraction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.