Abstract

Investigation of physics on light-matter interaction and strong coupling formation in organic microcavities is important to characterize the device structure enabling efficient room-temperature polariton condensation. In this study, we evaluate quantitatively the light-matter interaction parameters for three types of organic single-crystal microcavities and discuss the effects of microcavity structures on the strong coupling formation. We found that improvement in cavity quality factor causes a reduction in the photon damping constant, which results in an increase in the Rabi splitting energy. Moreover, when we used a metal thin film as the cavity mirror, it was revealed that the exciton damping became 30 times stronger than that in a dielectric mirror cavity. These experimental findings are very intriguing to achieve low-threshold or electrically pumped organic polariton devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call