Abstract

The cavitation erosion resistance of 16Cr–5Ni grade martensitic stainless steel was evaluated for long periods of up to 35h in a vibratory cavitation test rig as per the guidelines of the ASTM G32 standard. The change in retained austenite content during the initial period of cavitation was monitored by x-ray diffractometry. The evolution of surface topography features and quantitative 3D surface texture parameters were analyzed after different cavitation exposures. The average surface roughness deviations (Sa), standard deviation roughness (Sq), mean roughness depth (Sz) and surface skewness (Ssk) with cavitation time and the corresponding 2D line roughness parameters Ra, Rq, Rz, and Rsk were evaluated using a confocal laser scanning microscope to identify the damage mechanisms in the steel. Also, the rate of change of the surface area and the cavitated volume during cavitation were studied. Three stages of cavitation erosion, such as incubation, acceleration and steady erosion rate based on metal loss rate were determined. A correlation was observed between the change in roughness profiles during the three stages and their respective rates of material loss. The use of 3D surface parameters is an important tool for monitoring progress of cavitation damage in large-sized components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.