Abstract

The bimolecular reaction between OH- and CH3F is not just a prototypical SN2 process, but it has three other product channels. Here, we develop an accurate full-dimensional potential energy surface (PES) based on 191 193 points calculated at the level CCSD(T)-F12a/aug-cc-pVTZ. A detailed dynamics and mechanism analysis was carried out on this potential energy surface using the quasi-classical trajectory approach. It is verified that the trajectories do not follow the minimum energy path (MEP), but directly dissociate to F- and CH3OH. In addition, a new transition state for proton exchange and a new product complex CH2F-⋯H2O for proton abstraction were discovered. The trajectories avoid the transition state or this complex, instead dissociate to H2O and CH2F- directly through the ridge regions of the minimum energy path before the transition state. These non-MEP dynamics become more pronounced at high collision energies. Detailed dynamic simulations provide new insights into the atomic-level mechanisms of the title reaction, thanks to the new chemically accurate PES, with the aid of machine learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.