Abstract
To evaluate quantitative dual-energy computed tomography (DECT) for phantomless analysis of cancellous bone mineral density (BMD) of vertebral pedicles and to assess the correlation with pedicle screw pull-out strength. Twenty-nine thoracic and lumbar vertebrae from cadaver specimens were examined with DECT. Using dedicated post-processing software, a pedicle screw vector was mapped (R1, intrapedicular segment of the pedicle vector; R2, intermediate segment; R3, intracorporal segment; global, all segments) and BMD was calculated. To invasively evaluate pedicle stability, pedicle screws were drilled through both pedicles and left pedicle screw pull-out strength was measured. Resulting values were correlated using the paired t test and Pearson's linear correlation. Average pedicle screw vector BMD (R1, 0.232 g/cm(3); R2, 0.166 g/cm(3); R3, 0.173 g/cm(3); global, 0.236 g/cm(3)) showed significant differences between R1-R2 (P < 0.002) and R1-R3 (P < 0.034) segments while comparison of R2-R3 did not reach significance (P > 0.668). Average screw pull-out strength (639.2 N) showed a far stronger correlation with R1 (r = 0.80; P < 0.0001) than global BMD (r = 0.42; P = 0.025), R2 (r = 0.37; P = 0.048) and R3 (r = -0.33; P = 0.078) segments. Quantitative DECT allows for phantomless BMD assessment of the vertebral pedicle. BMD of the intrapedicular segment shows a significantly stronger correlation with pedicle screw pull-out strength than other segments. • Quantitative dual-energy CT enables evaluation of pedicle bone mineral density. • Intrapedicular segments show significant differences regarding bone mineral density. • Pedicle screw pull-out strength correlated strongest with R1 values. • Dual-energy CT may improve preoperative assessment before transpedicular screw fixation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have