Abstract

Ketone ester ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate) has gained popularity as an exogenous means to achieve ketosis. Regarding its potential as a therapeutic prodrug, it will be necessary to study its pharmacokinetic profile and its proximal metabolites (beta-hydroxybutyrate, 1,3-butanediol, and acetoacetate) in humans. Here we develop and validate two LC-MS methods for quantifying KE and its metabolites in human plasma. The first assay uses a C18 column to quantitate ketone ester, beta-hydroxybutyrate, and 1,3-butanediol, and the second assay uses a hydrophilic interaction liquid chromatography (HILIC) column for the quantitation of acetoacetate. The method was partially validated for intra- and inter-day accuracy and precision based on the ICH M10 guidelines. For both the assays, the intra- and inter-run accuracy was ±15% of the nominal concentration, and the precision (%CV) was <15% for all 4 molecules being quantified. The matrix effect for all molecules was evaluated and ranged from -62.1 to 44.4% (combined for all molecules), while the extraction recovery ranged from 65.1 to 119% (combined for all molecules). Furthermore, the metabolism of ketone ester in human plasma and human serum albumin was studied using the method. Non-saturable metabolism of ketone ester was seen in human plasma at concentrations as high as 5 mM, and human serum albumin contributed to the metabolism of ketone ester. Together, these assays can be used to track the entire kinetics of ketone ester and its proximal metabolites. The reverse-phase method was used to study the metabolic profile of KE in human plasma and the plasma protein binding of 1,3-BD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call