Abstract

This work investigates the link between the retentivity and the stationary phase to mobile phase mass transfer resistance of hydrophilic interaction liquid chromatography (HILIC) columns packed with the same base ethylene-bridged hybrid particles (BEH). The retention volumes, the plate heights, and the volume of the adsorbed water layer were measured for the ACQUITYTM UPLCTM BEHTM 130 Å HILIC Column (unbonded BEH), ACQUITY UPLC BEH 130 Å Amide Column (amide group attached), and AtlantisTM Premier BEH 95 Å Z-HILIC (zwitterionic group attached) Column. The method of Guo (toluene retention volumes in pure acetonitrile and in the HILIC eluent) was validated from the UNIFAC group-contribution method and applied to measure accurately the water layer volumes in these columns. A strong correlation was found between the retention volumes of most neutral polar analytes and the volume of the water layer adsorbed in the HILIC column. The fraction of the pore volume occupied by the water layer increases significantly from the BEH HILIC Column to the BEH Amide Column, and to the BEH Z-HILIC Column. This is explained by the water solvation of the attached ligands in the pore volume of the BEH Particles and to the smaller average mesopore size of the BEH Z-HILIC Particles. A second and strong correlation is also observed between the water content in the HILIC particle and the stationary phase to mobile phase mass transfer resistance of the HILIC columns at high mobile phase linear velocities. The measured intra-particle diffusivity normalized to the bulk diffusion coefficient decreased from 0.33 (BEH HILIC Column) to 0.10 (BEH Amide Column) and to only 0.03 (BEH Z-HILIC Column) for comparable retention of cytosine. These results are fully consistent with the higher viscosity of the internal eluent (higher water content) and higher internal obstruction for diffusion (smaller mesopores and internal porosity) in the BEH Z-HILIC Particles. Still, in gradient elution mode, the peak capacity was found to be 18% higher for the BEH Z-HILIC Column than that on the BEH Amide Column because the retention factors at elution were smaller when maintaining the same analysis time and starting eluent composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call