Abstract

A reverse phase high performance liquid chromatographic (RP-HPLC) method was developed for identification and estimation of 18-β-glycyrrhetinic acid (GA) in HepG2 cell line. The analysis was carried out using a JASCO HPLC system with a C-18 (3 μm) Supelco reversed phase column (150 x 4.7 mm) using a mobile phase of 80% CH3OH and 20% of CH3CN: tetrahydrofuran: water (10:80:10, v/v/v). The method was linear in the concentration range of 1.5–120 μg /mL (n = 5). The LOD and LOQ were determined based on standard deviation of the y-intercept and the slope of the calibration curve. The LOD and LOQ values were found to be 11.46 μg/mL and 34.72 μg/mL, respectively. The mean percentage recovery by standard addition experiments of GA is 92.4 % ± 5.2%. The intracellular GA concentration value, obtained as mean of five different determinations, was 45.8 ± 7.45 μg/mL. We have developed a HPLC-UV method for quantitative determination of GA inside cells, with advantages in the cost reduction and economy of the analytical process.

Highlights

  • The use of natural substances as adjuvants in many drug therapies is a new important trend in modern medicine, due to a satisfactory clinical efficacy and a low degree of toxicity [1,2,3]

  • We have developed a High-Performance Liquid Chromatography (HPLC)-UV method for quantitative determination of glycyrrhetinic acid (GA) inside cells, with advantages in the cost reduction and economy of the analytical process

  • Several studies [10, 11] have reported that inappropriate use of licorice can produce pseudoaldosteronism, by inactivating 11betahydroxysteroid-dehydrogenase [11-βHSD] and by binding to mineralocorticoid receptors. 11-βHSD catalyzes the oxidation of the active mineralocorticoid, cortisol, to the inactive cortisone and 11alpha-hydroxysteroiod-dehydrogenase is International Journal of Analytical Chemistry responsible for the reduction reaction

Read more

Summary

Introduction

The use of natural substances as adjuvants in many drug therapies is a new important trend in modern medicine, due to a satisfactory clinical efficacy and a low degree of toxicity [1,2,3]. Liquorice is a perennial plant with well-known pharmacological properties that is largely employed in the cosmetic and pharmacological fields, due to its several biological effects: antimicrobial, antiulcer, immunomodulatory, anti-inflammatory, etc. GA exhibits corticosteroid and mineral-corticoid activity due to the presence of the α,β-unsaturated ketone group: GA is able to interact with mineral-corticoid and glucocorticosteroid receptors and exhibits anti-inflammatory properties [7]. Several studies [10, 11] have reported that inappropriate use of licorice can produce pseudoaldosteronism, by inactivating 11betahydroxysteroid-dehydrogenase [11-βHSD] and by binding to mineralocorticoid receptors. 11-βHSD catalyzes the oxidation of the active mineralocorticoid, cortisol, to the inactive cortisone and 11alpha-hydroxysteroiod-dehydrogenase is International Journal of Analytical Chemistry responsible for the reduction reaction. GA potentiates the anti-inflammatory activity of cortisol by inhibiting its intracellular inactivation. GA is involved in strengthen red blood cell membrane integrity against both oxidative and proteolytic damage [12]

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.