Abstract

FLZ (N-[2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxyphenyl)-acrylamide) is a novel anti-Parkinson's disease candidate drug. A sensitive and specific high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated for the quantification of FLZ in rat brain. Carbamazepine was selected as the internal standard. Sample preparation involved double liquid-liquid extraction by n-hexane and ethyl acetate with high extraction efficiency. The chromatographic separation was achieved on a Zorbax SB-C(18) column (100 mm × 2.1 mm, 3.5 μm) with an isocratic elution system comprised of acetonitrile and 0.3% aqueous acetic acid at a flow rate of 0.3 ml/min. The elutes were detected under positive electrospray ionization (ESI) and the target analytes were quantified by multiple reaction monitoring (MRM) mode. The method was sensitive with the lowest limit of quantification (LLOQ) at 1.0 ng/g brain tissue. Good linearity (r>0.99) was obtained over the range of 1.0-400 ng/g. The intra- and inter-day precision ranged from 0.68% to 12%, while the accuracy between 92.7% and 111%. In addition, the stability, recovery and matrix effect involved in this method were also validated. The method was used to investigate the pharmacokinetics of FLZ in rat brain successfully after intravenous administration. The brain distribution studies showed that the brain distribution of FLZ was limited with the penetration ratio less than 0.1 in rats, with no target effect in the seven collected regions. Inhibition of P-glycoprotein (P-gp) by zosuquidar·3HCl ((2R)-1-{4-[(1aR,10bS)-1,1-difluoro-1,1a,6,10b-tetrahydrodibenzo[a,e]cyclopropa[c][7]annulen-6-yl]-1-piperazinyl}-3-(5-quinolinyloxy)-2-propanol trihydrochloride) resulted in a significant increase in brain-to-plasma ratio, while no significant increase by inhibition of breast cancer resistance protein (BCRP) by ko143 (2-methyl-2-propanyl 3-[(3S,6S,12aS)-6-isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl]propanoate). The results indicated that FLZ had poor penetration to the brain due to the P-gp transport system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.