Abstract

Elaboration of biosensors on the base of organic transistors with embedded biomolecules which can operate in an aqueous environment is of paramount importance. Electrolyte-gated organic field-effect transistors demonstrate high sensitivity in detection of various analytes. In this paper, we demonstrated the possibility of quantitative fast specific determination of virus particles by an aptasensor based on EGOFET. The sensitivity and selectivity of the devices were examined with the influenza A virus as well as with control bioliquids like influenza B, Newcastle disease viruses or allantoic fluid with different dilutions. The influence of the semiconducting layer thickness on EGOFETs sensory properties is discussed. The fabrication of a multi-flow cell that simultaneously registers the responses from several devices on the same substrate and the creation of a multi-sensor flow device are reported. The responses of the elaborated bioelectronic platform to the influenza A virus obtained with application of the portable multi-flow mode are well correlated with the responses obtained in the laboratory stationary mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.