Abstract

Seizures frequently occur in paediatric emergency and critical care, with up to 74% being sub-clinical seizures making detection difficult. Delays in seizure detection and treatment worsen the neurological outcome of critically-ill patients. Gold-standard seizure detections using multi-channels electroencephalograms (EEG) require trained clinical physiologists to apply scalp electrodes and highly specialised neurologists to interpret and identify seizures. In this study, we extracted phase synchrony and cross-channel coherence amplitude across 4 and 8 pre-selected scalp EEG signals. Binary classification is used to determine whether the signal segment is seizure or non-seizure, and the predictions were compared against the gold-standard seizure onset markings. The application of the algorithm on a cohort of forty routinely collected EEGs from paediatric patients showed an average accuracy of 77.2 % and 76.5% using 4 and 8 channels, respectively. Clinical Relevance- This work demonstrates the feasibility of seizure detection with pre-defined 4 and 8 EEG electrodes with an average accuracy of 77%. This means for the first time seizure detection is possible using an EEG montage that can be applied readily at the bedside independent of expert input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call