Abstract

The arrangement of cardiac cells into strand and sheet-like structures within the heart wall, confers important electrical properties onto heart tissue. Unraveling cardiomyocyte architecture in both healthy and diseased hearts is fundamental to understanding the mechanisms generating normal rhythm and arrhythmia. We analyzed five extended volume serial image stacks of normal pig left ventricular tissue. Analysis included: (1) reconstruction of original tissue volume and shape with non-linear correction maps; (2) segmentation and higher-order descriptions, areas and orientations of laminar structures through the heart wall; (3)computation of fiber directions; (4) computation of tissue connectivity using a shell filter. These measures contributed to a deeper and more objective understanding of cardiac tissue structures and their spatial variation than previously possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.