Abstract
Background Nanoparticles (NPs) hold promise as alternatives to antibiotics in the fight against multi-drug-resistant bacteria. However, concerns about their cytotoxicity, particularly their effects on mammalian cells, must be thoroughly addressed to ensure therapeutic safety. Amphiphilic Janus NPs, which have segregated hydrophobic and polycationic ligands on two hemispheres, have previously been shown to exhibit potent antibacterial activity. Methods In this study, we evaluated the cytotoxicity of amphiphilic Janus NPs in immune and cancer cell lines. Cytotoxicity assays were performed to assess the effects of Janus NPs on cell viability and membrane integrity, with a particular focus on how internalization of the nanoparticles influenced cellular responses. Results The results revealed that both immune and cancer cells exhibited negligible cytotoxic effects when exposed to Janus NPs. However, phagocytic immune cells demonstrated greater susceptibility to membrane damage and viability loss, suggesting that internalization plays a significant role in nanoparticle-induced cytotoxicity. Conclusions Amphiphilic Janus NPs show great potential as highly effective antibacterial agents with minimal cytotoxicity. While immune cells may be more vulnerable to nanoparticle-induced damage due to their internalization capacity, these findings support the further investigation of Janus NPs for clinical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.