Abstract
We introduce a notion of \beta -almost periodicity and prove quantitative lower spectral/quantum dynamical bounds for general bounded \beta -almost periodic potentials. Applications include the first sharp arithmetic spectral criterion for the entire family of supercritical analytic quasiperiodic Schrödinger operators and arithmetic spectral/quantum dynamical criteria for families with zero Lyapunov exponents, with applications to Sturmian potentials and the critical almost Mathieu operator. In particular, we disprove a 1994 conjecture of Wilkinson–Austin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.