Abstract

It has long been known, after Wiener (e.g. see (11), vol. 1, p. 108, (5), (8), §5·6)) that a measure μ whose Fourier transform vanishes at infinity is continuous, and generally, that μ is continuous if and only if is small ‘on the average’. Baker (1) has pursued this theme and obtained concise necessary and sufficient conditions for the continuity of μ, again expressed in terms of the rate of decrease of . On the other hand, for continuous μ, Rudin (9) points out the difficulty in obtaining criteria based solely on the asymptotic behaviour of by which one may determine whether μ has a singular component. The object of this paper is to show further that any such criteria must be complicated indeed. We shall show that the absolutely continuous measures on T = [0, 2π) whose Fourier transforms are the most well-behaved (namely, those of the form (1/2π)f(x)dx, where f has an absolutely convergent Fourier series) are such that one may modify their transforms on ‘large’ subsets of Z so that they become the transforms of singular continuous measures. Moreover, the singular continuous measures in question may be chosen so that their Fourier transforms do not vanish at infinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call