Abstract

AbstractThe submicroscopic morphology of uniaxially deformed isotactic polypropylene films has been examined by small‐angle light scattering (SALS), electron microscopy, optical microscopy, small‐angle x‐ray scattering (SAXS), wide‐angle x‐ray diffraction, birefringence, sonic modulus, and density methods. Several new interpretations and extensions of existing theories are developed and verified experimentally as follows. (1) The Vv SALS pattern is shown to be a new tool for the identification of the sign of the birefringence of spherulites too small to be seen in the optical microscope. The theoretical dependence of the Vv SALS pattern is developed and verified experimentally with patterns from isotactic polypropylene, polyethylene, Penton, nylon 6,6, poly(ethylene terephthalate), and nylon 6,10. (2) Intraspherulitic lamellar behavior during deformation can be identified from the SAXS pattern. This includes quantitative evaluation of the long spacing between lamellae and their average orientation. (3) The two‐phase sonic modulus theory is valid over the wide range of deformations, crystallinities, processing temperatures, and molecular weights used in this study. The deformation of isotactic polypropylene films drawn at 110 and 135°C. has been characterized quantitatively in terms of an integrated picture of mass movement on all morphological levels: the molecular, the interlamellar, and the spherulitic. At both temperatures, the spherulites deform affinely with extension, whereas the deformation mechanisms within the spherulite depend on the location of the radii with respect to the applied load. During spherulite deformation, lamellar orientation and separation processes predominate, whereas at high extensions, fibrillation occurs and crystal cleavage processes predominate. The noncrystalline region orients throughout the draw region. At 135°C. non‐orienting relaxation processes appear in the noncrystalline region which retard the rate of molecular orientation with extension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.