Abstract
Surface freezing and thawing processes pose significant influences on surface water and energy balances, which, in turn, affect vegetation growth, soil moisture, carbon cycling, and terrestrial ecosystems. At present, the changes in surface freezing and thawing states are hotspots of ecological research, but the variations of surface frozen days (SFDs) are less studied, especially in the permafrost areas covered with boreal forest, and the influence of the environmental factors on the SFDs is not clear. Utilizing the Advanced Microwave Scanning Radiometer for EOS (AMSRE) and Microwave Scanning Radiometer 2 (AMSR2) brightness temperature data, this study applies the Freeze–Thaw Discriminant Function Algorithm (DFA) to explore the spatiotemporal variability features of SFDs in the Northeast China Permafrost Zone (NCPZ) and the relationship between the permafrost distribution and the spatial variability characteristics of SFDs; additionally, the Optimal Parameters-based Geographical Detector is employed to determine the factors that affect SFDs. The results showed that the SFDs in the NCPZ decreased with a rate of −0.43 d/a from 2002 to 2021 and significantly decreased on the eastern and western slopes of the Greater Khingan Mountains. Meanwhile, the degree of spatial fluctuation of SFDs increased gradually with a decreasing continuity of permafrost. Snow cover and air temperature were the two most important factors influencing SFD variability in the NCPZ, accounting for 83.9% and 74.8% of the spatial variation, respectively, and SFDs increased gradually with increasing snow cover and decreasing air temperature. The strongest explanatory power of SFD spatial variability was found to be the combination of air temperature and precipitation, which had a coefficient of 94.2%. Moreover, the combination of any two environmental factors increased this power. The findings of this study can be used to design ecological environmental conservation and engineer construction policies in high-latitude permafrost zones with forest cover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.