Abstract

BackgroundThe aim of this study was to quantitatively benchmark iodine imaging across specific virtual monoenergetic energy levels, iodine maps and virtual non-contrast images with different phantom sizes and iodine concentrations, using a rapid switching dual-energy CT (DECT) and a dual source DECT, in order to investigate accuracy and potential differences between the technologies.MethodsSolutions of iodine contrast (10, 20, 30, 50, and 100 mg/mL), sterile water and saline were scanned in a phantom on a rapid switching single-source and dual-source DECT scanners from two different vendors. The phantom was equipped with polyurethane rings simulating three body sizes. The datasets were reconstructed in virtual monoenergetic energy levels (70, 80, 90, 100, 110, 120, 130, and 140 keV), virtual non-contrast images and iodine maps. HU and iodine concentrations were measured by placing ROIs in the iodine solutions.ResultsThe iodine concentrations were reproduced with a high degree of accuracy for the single-source DECT (1.8–9.0%), showing a slight dependence on phantom size. The dual source DECT technique showed deviant values (error -33.8 to 12.0%) for high concentrations. In relation to the virtual non-contrast measurements, the images from both vendors were affected by the iodine concentration and phantom size (-127.8 to 539.1 HU). Phantom size did not affect the calculated monoenergetic attenuation values, but the attenuation values varied between the scanners.ConclusionsQuantitative measurements of post-processed images are dependent on the concentration of iodine, the phantom size and different technologies. However, our study indicates that the iodine maps are reliable for quantification of iodine.

Highlights

  • The aim of this study was to quantitatively benchmark iodine imaging across specific virtual monoenergetic energy levels, iodine maps and virtual non-contrast images with different phantom sizes and iodine concentrations, using a rapid switching dual-energy computed tomography (CT) (DECT) and a dual source dual-energy CT (DECT), in order to investigate accuracy and potential differences between the technologies

  • The aim of this study was to quantitatively benchmark iodine imaging across specific monoenergetic energy levels, iodine maps and virtual non-contrast images with different phantom sizes and iodine concentrations, and from two vendors, in order to fully investigate accuracy and potential differences in functionality and outcome between the technologies

  • The measured values in the iodine dilutions were close to the nominal concentrations, except for the highest concentration calculated by Siemens

Read more

Summary

Introduction

The aim of this study was to quantitatively benchmark iodine imaging across specific virtual monoenergetic energy levels, iodine maps and virtual non-contrast images with different phantom sizes and iodine concentrations, using a rapid switching dual-energy CT (DECT) and a dual source DECT, in order to investigate accuracy and potential differences between the technologies. For soft tissue in particular, the differences in mass density are subtle. The latter is not unique to one specific type of tissue but related to the atomic composition of the tissue. CT scanning with spectral energy, with simultaneous acquisition of datasets using two x-ray spectra of diverse energies, allows optimisation of contrast in Harsaker et al European Radiology Experimental (2021) 5:24 vascular imaging, and virtual subtraction of bone structures, calcified areas or iodine in contrast-enhanced images [1,2,3,4]. Siemens Healthineers uses a dual source CT while General Electric Healthcare uses one x-ray tube with rapid voltage switching [5]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.