Abstract
Given that porcine and human retinas have similar structures and characteristics, ex vivo culture of porcine neuroretina provides an attractive model for studying mechanisms of human retinal injury and degenerative disease. Here, we describe the method that was used to establish and characterize an adult porcine retina culture system as a rapid screening tool for retinal survival in real time. Neuroretina explants 8 mm in diameter were harvested from adult swine and cultured on porous cell culture inserts with adjustable heights. Retina explant viability was evaluated at 1, 4, 7, 11, and 14 days of culture using a resazurin-based metabolic assay. The explants were analyzed morphologically through immunohistochemistry for glial activation and apoptosis. Morphometric analysis was also performed on hematoxylin and eosin-stained retina sections from each time point. The viability of retina explants gradually decreased over time in culture. The laminar structure of the neuroretina was well preserved during the first 7 days. However, by day 14, most explants showed significant loss of cells in each laminar layer and obvious thinning. Overall, the progressive loss of retinal lamination and thickness, and increase in apoptotic nuclei with activated hypertrophic Müller cells were well correlated with the metabolic activity of the ex vivo neuroretina explants. This study was the first report to describe the use of a high-throughput and quantitative method for monitoring retina explant viability in real time. Ex vivo neuroretina cultures closely mimic the functional dynamics of the organ, and can be used efficiently to screen novel therapeutics for retinal neurodegenerative disease.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have