Abstract

The objective of the study is the quantitative analysis of the dose-time dependences of changes occurring in collagen of bladder and rectum after gamma-irradiation using optical methods [nonlinear microscopy in a second harmonic generation (SHG) detection regime and cross-polarization optical coherence tomography (CP OCT)]. For quantitative assessment of the collagen structure, regions of interest on the SHG-images of two-dimensional (2-D) distribution of SHG signal intensity of collagen were chosen in the submucosa. The mean SHG signal intensity and its standard deviation were calculated by ImageJ 1.39p (NIH). For quantitative analysis of CP OCT data, an integral depolarization factor (IDF) was calculated. Quantitative calculation of the SHG signal intensity and the IDF can provide additional information about the processes of the collagen radiation-induced degradation and subsequent remodeling. High positive correlation between the mean SHG signal intensity and the mean IDF of bladder and rectum demonstrates that CP OCT can be used as an "optical biopsy" in the grading of collagen radiation damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.