Abstract

Radiation therapy is one of the cardinal approaches in the treatment of malignant tumors of the pelvis. It leads to the development of radiation-induced complications in the normal tissues. Thus, the evaluation of radiation-induced changes in the extracellular matrix of the normal tissue is deemed urgent, since connective tissue stroma degradation plays a crucial role in the development of Grade 3–4 adverse effects (hemorrhage, necrosis, and fistula). Such adverse effects not only drastically reduce the patients’ quality of life but can also become life-threatening. The aim of this study is to quantitatively analyze the bladder collagen state in patients who underwent radiation therapy for cervical and endometrial cancer and in patients with chronic bacterial cystitis and compare them to the normal bladder extracellular matrix. Materials and methods: One hundred and five patients with Grade 2–4 of radiation cystitis, 67 patients with bacterial chronic cystitis, and 20 volunteers without bladder pathology were enrolled. Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT). Results: The main sign of the radiation-induced damage of collagen fibrils and fibers was the loss of the ordered “basket-weave” packing and a significant increase in the total area of ruptures deeper than 1 µm compared to the intact sample. The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis. The OCT signal brightness in cross-polarization images demonstrated a gradual decrease compared to the intact bladder depending on the grade of the adverse event. Conclusions: The observed correspondence between the extracellular matrix changes at the microscopic level and at the level of the general organ architectonics allows for the consideration of CP OCT as a method of “optical biopsy” in the grading of radiation-induced collagen damage.

Highlights

  • Radiation therapy (RT) is one of the basic approaches in the treatment of malignant tumors of the pelvis

  • Collagen changes were evaluated depending on its hierarchical level: fibrils and fibers level by atomic force microscopy; fibers and bundles level by two-photon microscopy in the second harmonic generation (SHG) mode; general collagen architectonics by cross-polarization optical coherence tomography (CP OCT)

  • The numerical analysis of SHG images detected that a decrease in the SHG signal intensity of collagen is correlated with the increase in the grade of radiation cystitis

Read more

Summary

Introduction

Radiation therapy (RT) is one of the basic approaches in the treatment of malignant tumors of the pelvis (i.e., cervical cancer, endometrial cancer, prostate cancer) Irradiation for these neoplasms assumes a combination of an external-beam therapy and high-dose-rate brachytherapy that leads to the development of radiation-induced complications in normal tissues [1,2]. During the last 20 years, intensity-modulated RT techniques have been developed, which employ a high dose gradient at the target/normal tissue border Their application allowed an essential reduction in the incidence and severity of RT complications affecting the rectum and bladder [7,8,9]. It has not managed to eliminate the problem of RT adverse effects completely

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.