Abstract

ObjectivesAcetabular bone defect quantification and classification is still challenging. The objectives of this study were to suggest and define parameters for the quantification of acetabular bone defects, to analyze 50 bone defects and to present the results and correlations between the defined parameters.MethodsThe analysis was based on CT-data of pelvises with acetabular bone defects and their reconstruction via a statistical shape model. Based on this data, bone volume loss and new bone formation were analyzed in four sectors (cranial roof, anterior column, posterior column, and medial wall). In addition, ovality of the acetabulum, lateral center-edge angle, implant migration, and presence of wall defects were analyzed and correlations between the different parameters were assessed.ResultsBone volume loss was found in all sectors and was multidirectional in most cases. Highest relative bone volume loss was found in the medial wall with median and [25, 75]—percentile values of 72.8 [50.6, 95.0] %. Ovality, given as the length to width ratio of the acetabulum, was 1.3 [1.1, 1.4] with a maximum of 2.0, which indicated an oval shape of the defect acetabulum. Lateral center-edge angle was 30.4° [21.5°, 40.4°], which indicated a wide range of roof coverage in the defect acetabulum. Total implant migration was 25.3 [14.8, 32.7] mm, whereby cranial was the most common direction. 49/50 cases showed a wall defect in at least one sector. It was observed that implant migration in cranial direction was associated with relative bone volume loss in cranial roof (R = 0.74) and ovality (R = 0.67).ConclusionWithin this study, 50 pelvises with acetabular bone defects were successfully analyzed using six parameters. This could provide the basis for a novel classification concept which would represent a quantitative, objective, unambiguous, and reproducible classification approach for acetabular bone defects.

Highlights

  • Revision hip surgery is often associated with acetabular bone defects, which are challenging to quantify

  • Highest relative bone volume loss was found in the medial wall with median and [25, 75]—percentile values of 72.8 [50.6, 95.0] %

  • 50 pelvises with acetabular bone defects were successfully analyzed using six parameters. This could provide the basis for a novel classification concept which would represent a quantitative, objective, unambiguous, and reproducible classification approach for acetabular bone defects

Read more

Summary

Introduction

Revision hip surgery is often associated with acetabular bone defects, which are challenging to quantify. Numerous classification systems have been published in order to categorize those defects [1,2,3] Most of these classification systems are based on plane radiographs and mainly rely on the interpretation of anatomical landmarks, which may lead to poor reliability and repeatability [4,5,6]. An ideal classification system would provide an objective, unambiguous, surgically relevant and reproducible categorization of bone defects, while being easy to apply. This would ease communication between surgeons, determination of treatment strategy and would facilitate the prediction and comparison of surgical outcomes

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.