Abstract
BackgroundSturge-Weber syndrome (SWS) is often accompanied by seizures, stroke-like episodes, hemiparesis, and visual field deficits. This study aimed to identify early pathophysiologic changes that exist before the development of clinical symptoms and to evaluate if the apparent diffusion coefficient (ADC) map is a candidate early biomarker of seizure risk in patients with SWS. MethodsThis is a prospective cross-sectional study using quantitative ADC analysis to predict onset of epilepsy. Inclusion criteria were presence of the port wine birthmark, brain MRI with abnormal leptomeningeal capillary malformation (LCM) and enlarged deep medullary veins, and absence of seizures or other neurological symptoms. We used our recently developed normative, age-specific ADC atlases to quantitatively identify ADC abnormalities, and correlated presymptomatic ADC abnormalities with risks for seizures. ResultsWe identified eight patients (three girls) with SWS, age range of 40 days to nine months. One patient had predominantly LCM, deep venous anomaly, and normal ADC values. This patient did not develop seizures. The remaining seven patients had large regions of abnormal ADC values, and all developed seizures; one of seven patients had late onset seizures. ConclusionsLarger regions of decreased ADC values in the affected hemisphere, quantitatively identified by comparison with age-matched normative ADC atlases, are common in young children with SWS and were associated with later onset of seizures in this small study. Our findings suggest that quantitative ADC maps may identify patients at high risk of seizures in SWS, but larger prospective studies are needed to determine sensitivity and specificity.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have