Abstract

Hexa-mix-chlorinated/brominated benzenes (HXBs), a group of newly found analogues of hexachlorobenzene (HCB) and hexabromobenzene (HBB), may exhibit similar environmental risks and toxicities as HCB and HBB, and therefore possess high interests in environmental and toxicological research. Yet information regarding HXBs in the environment remains scarce. In this study, we developed an isotope dilution method for quantitative and semiquantitative determination of five HXBs in fly ash, soil and air using gas chromatography high resolution mass spectrometry (GC-HRMS) in multiple ion detection mode. The samples were Soxhlet-extracted and purified with multilayer composite silica gel-alumina columns, followed by GC-HRMS detection. Identification of HXBs was conducted by the comparison between theoretical and detected mass spectra using paired-samples T test and cosine similarity analysis. Two HXBs (C6BrCl5 and C6Br4Cl2) with reference standards were quantitatively determined while the rest three (C6Br2Cl4, C6Br3Cl3 and C6Br5Cl) without reference standards were semiquantitatively analyzed by sharing the calibration curves of C6BrCl5 and C6Br4Cl2 in cooperation with isotopologue distribution computation. The accuracies for C6BrCl5 and C6Br4Cl2 were 87.3–107.8% with relative standard deviations (RSD) of 2.8–5.0%. The method limits of quantification of the HXBs were 0.10 ng/g in fly ash and soil samples and 0.09 pg/m3 in ambient air samples. The recoveries ranged from 42.7% to 102.1% with RSD of 3.7–13.9%. This method has been successfully applied to the analysis of the HXBs in the environmental samples. The total concentrations of HXBs in the fly ash, soil and ambient air samples were 19.48 ng/g, 10.44 ng/g and 5.13 pg/m3, respectively, which accounted for 10.6%, 0.4% and 10.8% of the corresponding total concentrations of HCB and HBB. This study provides a reference method for quantitative and/or semiquantitative analyses of novel mix-halogenated organic compounds, and sheds light on the full picture of HXBs pollution in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call