Abstract

Formyl peptides and leukotriene B4 (LTB4) stimulate disparate neutrophil functional responses and second messenger generation. The hypothesis that differences in receptor-guanine nucleotide-binding proteins (G protein) interaction account for the disparate responses was examined using HL-60 granulocyte plasma membranes. The quantity of receptor-coupled G proteins was determined by guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) equilibrium binding in the presence or absence of f-Met-Leu-Phe and/or LTB4. About one-third of the total GTP gamma S binding sites were coupled to f-Met-Leu-Phe receptors, to LTB4 receptors, and to receptors when both ligands were added simultaneously. The dissociation constant of GTP gamma S-binding sites in the presence of LTB4 was significantly greater than that in the presence of f-Met-Leu-Phe. f-Met-Leu-Phe shifted the GDP dose-inhibition curve for GTP gamma S binding further to the right than did LTB4. The apparent initial rate of GTP hydrolysis and GTP gamma S binding stimulated by f-Met-Leu-Phe was significantly greater than that stimulated by LTB4. There were significantly more formyl peptide receptors than LTB4 receptors, however, formyl peptide and LTB4 receptor density did not differ under GTP gamma S binding assay conditions. The rate of GTP hydrolysis stimulated by LTB4 was not increased in membranes containing twice the LTB4 receptor density. We conclude that formyl peptide receptors stimulate more rapid activation of a common pool of G proteins than LTB4 receptors because of a significantly reduced affinity of formyl peptide receptor-activated G proteins for GDP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.