Abstract
Traditional color vision tests depend on subjective judgments and are not suitable for infant children and subjects with cognitive dysfunction. We aimed to explore an objective and quantitative color vision testing method based on sweep steady-state visual evoked potentials (sweep SSVEPs) and compare the results with subjective Farnsworth-Munsell (FM) 100-hue test results. A red-green SSVEP pattern reversal checkboard paradigm at different luminance ratios was used to induce visual evoked potentials (VEPs) from 15 color vision deficiencies (CVDs) and 11 normal color vision subjects. After electroencephalography signals were processed by canonical correlation analysis, an equiluminance turning curve corresponding to the activation of the L-cones and M-cones at different levels of color vision was established. Then, we obtained different equiluminance T and proposed the SSVEP color vision severity index (ICVD) to quantify color vision function and the severity of CVDs. In addition, the FM 100-hue test was used to obtain subjective data for the diagnosis of color vision. The value of ICVD can be an indicator of the level of color vision. Both the total error scores (TES) and confusion index (C-index) of the FM 100-hue test were significantly correlated with ICVD values (P < 0.001, respectively). ICVD also had a good classification effect in detecting normals, anomalous trichromats and dichromats. Moreover, equiluminance T had a good effect on classifying protans and deutans in subjects with CVDs. Color vision evaluation with sweep SSVEPs showed a good correlation with subjective psychophysical methods. SSVEPs can be an objective and quantitative method to test color vision and diagnose CVDs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have