Abstract

ABSTRACTWe use an improved setup for deducing quantitative surface potential values by means of frequency modulated Kelvin-probe force microscopy (FM-KPFM). This method is sensitive to the electrostatic force gradient rather than the absolute force probed in KPFM so far, and therefore provides both a higher lateral resolution and quantitative values. Furthermore, FM-KPFM allows using cantilevers with high spring constants which even favors both the stability and increased topographic resolution. Here, we apply FM-KPFM to deduce interfacial electrical properties of the sub-monolayer coverage of three adsorbates on metal substrates: lithium chloride films, Copper-porphyrines, and C60 molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.