Abstract
Comparative measurements between frequency modulation Kelvin probe force microscopy (FM-KPFM) using low frequency bias voltage and heterodyne FM-KPFM using high frequency bias voltage were performed on the surface potential measurement. A silicon substrate patterned with p- and n-type impurities was used as a quantitative sample. The multi-pass scanning method in the measurements of FM-KPFM and heterodyne FM-KPFM was used to eliminate the effect of the tip–sample distance dependence. The measured surface potentials become lower in the order of the p-type region, n-type region and n+-type region by both FM-KPFM and heterodyne FM-KPFM, which are in good agreement with the order of the work functions of the pn-patterned Si sample. We observed the difference in the surface potentials due to the surface band bending measured by FM-KPFM and heterodyne FM-KPFM. The difference is due to the fact that the charge transfer between the surface and bulk levels may or may not respond to AC bias voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.