Abstract

Chemical derivatization-assisted electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQ-MS) has become an efficient tool for the quantification of low-molecular-weight molecules. Many studies found that the derivatives of the same analytes derivatized by different derivatization reagents with the same reaction group had different detection sensitivity, even under the same conditions of electrospray ionization-mass spectrometry (ESI-MS). This phenomenon was suggested to be caused by the different modifying groups in the derivatization reagents. However, there is still a lack of systematic study on how modifying groups in the derivatization reagents affect the detection sensitivity of their corresponding derivatives of analytes, especially theoretical investigations. In this study, we employed a quantitative structure-activity relationship (QSAR) modeling approach to explore the relationship between modifying group structures and the detection sensitivity of derivatization reagents and their derivatives during ESI-MS detection. A total of 110 derivatization reagents of the hydrazine family and their hexanal derivatives (substituted hydrazones) were selected as the prototypes to construct QSAR models. The established models suggested that several molecular descriptors, related to hydrophobicity, electronegativity, and molecular shape, were related to the detection sensitivity of hexanal derivatives induced by different modifying groups in the derivatization reagents. Besides, we found that the detection sensitivity of compounds detected in selected ion mode (SIM) showed a positive correlation with that obtained in multiple reaction monitoring mode (MRM), and the ionization efficiency was the key factor on the detection sensitivity in both modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.