Abstract
Soy isoflavones are becoming of increasing interest as nutritional agents which can be used to combat osteoporosis and hyperlipidemia, and are also being considered as potential cancer chemopreventive compounds. However, prior to their formulation and distribution as therapeutic agents, thorough pharmacokinetic and toxicological assessment needs to be completed in men and women in a variety of health conditions in order to ensure their therapeutic efficacy and safety. At this time, studies of purified soy isoflavones are possible, and are being designed to fully evaluate the pharmacological utility of these preparations. In support of these studies, quantitative analysis of soy isoflavones in biological fluids can be accomplished with a wide variety of methods and analytical instrumentation. However, the relatively ubiquitous presence of high-performance liquid chromatography with ultraviolet detection (HPLC–UV) in most analytical laboratories, the relative ease of its operation, and the lesser expense of this instrumentation as compared to more sophisticated techniques such as liquid chromatography–mass spectrometry, offers some distinct advantages for its use in pharmacokinetic studies. In this manuscript, the development and validation of an HPLC–UV method for the quantitation of the principal soy isoflavones, genistein, daidzein, and glycitein, and their primary metabolites, in human plasma and urine is described. This analytical approach allows for pharmacologically relevant concentrations of the analytes and their principle metabolites to be detected, and has been validated in close agreement with the US Food and Drug Administration’s guidelines for the validation of methods to be used in support of pharmacokinetic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chromatography B: Biomedical Sciences and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.