Abstract

This article studies the behavior of the backscattering coefficient of a sparse forest canopy composed of relatively short black spruce trees. Qualitative analysis of the multiangular data measured by the RADARSAT synthetic aperture radar (SAR) sensor shows a good agreement with surface and vegetation volume scattering fundamental behaviors. For a quantitative analysis, allometric equations and measurements of tree components collected within the framework of the Extended Collaboration to Link Ecophysiology and Forest Productivity (ECOLEAP) project are used, in an existing multilayer radiative transfer model for forest canopies, to simulate the RADARSAT SAR data. In our approach, the fractional cover of trees estimated from aerial photographs is used as a weighting parameter to adapt the closed-canopy backscattering model to the sparse forest under study. Our objective is to analyze the sensitivity of the backscattering coefficient as a function of sensor configuration, soil wetness, forest cover, and forest structural properties in order to determine the suitable soil, vegetation, and sensor parameters for a given thematic application. For the entire incidence angle domain (20/spl deg/ to 50/spl deg/) of the sensor, simulations show that over a sparse forest composed of mature trees the monitoring of the ground surface is possible only under very wet soil conditions. Therefore, this article informs about the ability of the RADARSAT SAR sensor in monitoring wetlands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.