Abstract
Omnidirectional light propagation in a realistic superlattice is investigated. This work complements two previous articles [Phys. Rev. E 59, 3624 (1999); 61, 5802 (2000)] that analyzed the cases of transverse electric (TE) and transverse magnetic (TM) polarization modes, respectively, of the dielectric superlattice modeled by means of Dirac delta functions. We present a quantitative analysis of the transmission functions, the band structures, the equifrequency surfaces, and the photon density of states (PDOS) for both TE and TM modes of the real superlattice without any approximations on the given dielectric function profiles. One of the advantages is that the Brewster effect can be manifested via our approach. In addition, the modes corresponding to TM evanescent waves that are absent from the Dirac comb model can be predicted. Finally, the exact PDOS of the realistic superlattice for the TE and TM modes can be obtained, respectively. These results are relevant to the spontaneous emission by an atom or to dipole radiation in one-dimensional periodic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.