Abstract
In this study, a simple and effective method for accurate determination of lithium in brine samples was developed by the combination of laser induced breakdown spectroscopy (LIBS) and convolutional neural network (CNN). Our results clearly demonstrate that the use of CNN could efficiently overcome the complex matrix effects, and thus allows for on-site Li quantitative determination in brine samples by LIBS. Specifically, two CNN models with different input data (M-CNN with matrix emission lines, and DP-CNN with double Li lines) were constructed based on the primary matrix features on spectrum and Boltzmann equation, respectively. It was observed that DP-CNN model could greatly improve the accuracy of Li analysis. We also compared the quantitative analysis capabilities of DP-CNN model with partial least squares regression (PLSR) and principal component analysis-support vector regression (PCA-SVR) model, and the results clearly showed DP-CNN offers the best quantification results (higher accuracy and less matrix interference). Finally, five real brine samples were successfully analyzed by the proposed DP-CNN model, confirming by the average absolute error of the prediction of 0.28 mg L−1 and the average relative error of 3.48%. These results clearly demonstrate that input data plays an important role in the training of CNN model in LIBS analysis, and the proposed DP-CNN provides an effective approach to solve the matrix effects encountered in LIBS for Li measurement in brine samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have