Abstract

There is a large genetic diversity for fruit size and yield in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus]. Current cultivars have high fruit quality but may not be the highest yielders. This study was designed to estimate variance components and heritability of fruit yield (Mg·ha−1), fruit count (th·ha−1), and fruit size (kg/fruit) in a cross involving high-yielding ‘Mountain Hoosier’ with low-yielding ‘Minilee’. Six generations (PaS1, PbS1, F1, F2, BC1Pa, and BC1Pb) were developed and tested in Summer 2008 at two locations in North Carolina. Discrete classes were not observed within the F2 segregating population. The actual distribution of the F2 population for fruit yield, fruit count, and fruit size deviated from the normal distribution. ‘Mountain Hoosier’ had higher parental and backcross variance than ‘Minilee’. High F2 variance for fruit yield indicated large phenotypic variance. There was a larger environmental variance than genetic variance associated with the yield traits. Estimates of broad- and narrow-sense heritability were low to medium. A large number of effective factors indicated polygenic inheritance for fruit yield and fruit size. Gain from selection for yield is amendable by selection. As a result of this complex inheritance, selection based on individual plant selection in pedigree method may not be useful for yield improvement in this population. Hence, a selection scheme based on progeny testing using replicated plots, perhaps at multiple locations, is recommended.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call