Abstract

Breath analysis has attracted increasing attention in recent years due to its great potential for disease diagnostics at early stages and for clinical drug monitoring. There are several recent examples of successful development of real-time, in vivo quantitative analysis of exhaled breath metabolites via mass spectrometry. On the other hand, current mass spectrometer accessibility limitations restrict point-of-care applications. Here now, an offline method is developed for quantitative analysis of exhaled breath collected on inexpensive filter substrates for direct desorption and ionization by using low-temperature plasma-mass spectrometry (LTP-MS). In particular, different operating conditions of the ionization source were systematically studied to optimize desorption/ionization by using glycerol, a low volatility compound. Applications with respect to propofol, γ-valprolactone, and nicotine analysis in exhaled breath are demonstrated in this study. The effects of several filter substrate properties, including filter material and pore size, on the analyte signal were characterized. Cellulose filter papers performed best with the present analytes. In addition, filters with smaller pores enabled a more efficient sample collection. Furthermore, sample-collection flow rate was determined to have a very significant effect, with slower flow rates yielding the best results. It was also found that filters loaded with sample can be successfully stored in glass vials with no observable sample loss even after 3 days. Limits of detection under optimized conditions are shown to be competitive or significantly better compared with relevant techniques and with additional benefits of cost-efficiency and sample storage capabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call