Abstract
Crack tips in silica glass in moist atmosphere are filled with an equilibrium liquid condensation of a few hundred nanometers length. Not only does this local environment affect the chemistry of slow crack propagation by stress corrosion, but it also has an important mechanical effect due to its highly negative Laplace pressure. The present article presents an original technique for measuring the physical properties of the liquid condensation in terms of the Laplace pressure and critical condensation distance. This is achieved by combining in situ atomic force microscopy measurements of the condensate length and optical determination of the crack closure threshold in a double cleavage drilled compression specimen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.