Abstract
BackgroundPeste des petits ruminants virus (PPRV) is a highly contagious pathogen that strongly influences the productivity of small ruminants worldwide. Acetylation is an important post-translational modification involved in regulation of multiple biological functions. However, the extent and function of acetylation in host cells during PPRV infection remains unknown.MethodsDimethylation-labeling-based quantitative proteomic analysis of the acetylome of PPRV-infected Vero cells was performed.ResultsIn total, 1068 proteins with 2641 modification sites were detected in response to PPRV infection, of which 304 differentially acetylated proteins (DAcPs) with 410 acetylated sites were identified (fold change < 0.83 or > 1.2 and P < 0.05), including 109 up-regulated and 195 down-regulated proteins. Gene Ontology (GO) classification indicated that DAcPs were mostly located in the cytoplasm (43%) and participated in cellular and metabolic processes related to binding and catalytic activity. Functional enrichment indicated that the DAcPs were involved in the minichromosome maintenance complex, unfolded protein binding, helicase activity. Only protein processing in endoplasmic reticulum pathway was enriched. A protein-protein interaction (PPI) network of the identified proteins further indicated that a various chaperone and ribosome processes were modulated by acetylation.ConclusionsTo the best of our knowledge, this is the first study on acetylome in PPRV-infected host cell. Our findings establish an important baseline for future study on the roles of acetylation in the host response to PPRV replication and provide novel insights for understanding the molecular pathological mechanism of PPRV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.