Abstract

The nanoparticle-induced dose enhancement effect has been shown to improve the therapeutic efficacy of ionizing radiation in external beam radiotherapy. Whereas previous studies have focused on gold nanoparticles (AuNPs), no quantitative studies have been conducted to investigate the potential superiority of other high atomic number (Z) nanomaterials such as bismuth-based nanoparticles. The aims of this study were to experimentally validate and quantify the dose enhancement properties of commercially available bismuth-based nanoparticles (bismuth oxide (Bi2O3-NPs) and bismuth sulfide (Bi2S3-NPs)), and investigate their potential superiority over AuNPs in terms of radiation dose enhancement. Phantom cuvettes doped with and without nanoparticles where employed for measuring radiation dose enhancement produced from the interaction of radiation with metal nanoparticles. Novel 3D phantoms were employed to investigate the 3D spatial distribution of ionising radiation dose deposition. The phantoms were irradiated with kilovoltage and megavoltage X-ray beams and optical absorption changes were measured using a spectrophotometer and optical CT scanner. The radiation dose enhancement factors (DEFs) obtained for 50 nm diameter Bi2O3-NPs and AuNPs were 1.90 and 1.77, respectively, for 100 kV energy and a nanoparticle concentration of 0.5 mM. In addition, the DEFs of 5 nm diameter Bi2S3-NPs and AuNPs were determined to be 1.38 and 1.51, respectively, for 150 kV energy and a nanoparticle concentration of 0.25 mM. The results demonstrate that both bismuth-based nanoparticles can enhance the effects of radiation. For 6 MV energy the DEFs for all the investigated nanoparticles were lower (< 15%) than with kilovoltage energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call