Abstract
ObjectiveFluorodeoxyglucose-positron emission tomography (FDG-PET) is an established, independent, strong predictor of surgical outcome in refractory epilepsy. In this study, we explored the added value of quantitative [18F]FDG-PET features combined with clinical variables, including electroencephalography (EEG), [18F]FDG-PET, and magnetic resonance imaging (MRI) qualitative interpretations, to predict long-term seizure recurrence (mean post-op follow-up of 5.85 ± 3.77 years). MethodsMachine learning predictive models of surgical outcome were created using a random forest classifier trained on quantitative features in 89 patients with drug-refractory temporal lobe epilepsy evaluated at the Hospital of the University of Pennsylvania epilepsy surgery program (2003–2016). Quantitative features were calculated from asymmetry features derived from image processing using Advanced Normalization Tools (ANTs). ResultsThe best-performing model used quantification and had an out-of-bag accuracy of 0.71 in identifying patients with seizure recurrence (Engel IB or worse) which outperformed that using qualitative clinical data by 10%. This model is shared through open-source software for research use. In addition, several asymmetry features in temporal and extratemporal regions that were significantly associated with seizure freedom are identified for future study. SignificanceComplex quantitative [18F]FDG-PET imaging features can predict seizure recurrence in patients with refractory temporal lobe epilepsy. These initial retrospective results in a cohort with long-term follow-up suggest that using quantitative imaging features from regions in the epileptogenic network can inform the clinical decision-making process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.