Abstract

A real-time RT-PCR assay was developed using a TaqMan probe to detect and quantify Taura syndrome virus (TSV) in penaeid shrimp. A pair of RT-PCR primers, which amplify a 72 bp DNA fragment, and a TaqMan probe were selected from open reading frame 1 (ORF1) of the TSV genome. The primers and TaqMan probe used in this assay reacted with TSV isolates from Hawaii, Texas, Colombia, Mexico, Belize, Indonesia, and Thailand, but neither with RNA of healthy shrimp nor with an isolate of yellow head virus. A plasmid (pTSV-1) that contains the target TSV sequence was constructed and used to generate positive control RNA through in vitro transcription. The positive control RNA was used to demonstrate that the real-time RT-PCR assay has a detection limit of 100 copies and a log-linear range up to 10 8 copies of TSV RNA. This quantitative method was found to be highly reproducible, with low intra- and inter-assay variation. Coefficient of variation (CVs) values were 0.04–8.9 and 0.05–3.7%, respectively, for replicates within and among assays. This assay was used to quantify TSV in both acutely and chronically infected shrimp in a laboratory experiment. The quantities of TSV in the tissues of pleopods and gills were not significantly different, and there was no difference in TSV levels between the acutely and chronically infected groups. However, in the chronically infected shrimp, the quantities of TSV were one to two orders of magnitude higher in the lymphoid organ than in either gills or pleopods. This assay proved to be specific with high sensitivity, and it can be used to detect and quantify TSV in shrimp samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call