Abstract

Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.