Abstract

Traditional statistical analysis is challenged by modern massive data sets, which have huge sample size and dimension. Quantile regression has become a popular alternative to least squares method for providing comprehensive description of the response distribution and robustness against heavy-tailed error distributions. On the other hand, non-smooth quantile loss poses a new challenge to massive data sets. To address the problem, we transform the non-differentiable quantile loss function into a convex quadratic loss function based on Expectation-maximization (EM) algorithm using an asymmetric Laplace distribution. Both simulations and real data application are conducted to illustrate the performance of the proposed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.